	Exam	ination Ti	me: 90 mi	in Total F	Point: 100)points S	core:			,
	 Contestant must write down the answer of each problem in the blank, answer with erasure will not be credited! For Problem 17 and 18, presentation of solution on the space provided is a must, no credit will be given if only the final answer is written down in the paper! 									
ľ	Multiple Choice	1	2	3	4	5	6	7	8	
	Answer									
ľ	Fill-in the blank	9	10	11	12	13	14	15	16	
ľ	Answer									
A. 1.	Multiple For any	-Choice	Problems <i>x</i> , what ki	. (5 poin nd of inte	ts each, a ger is the	total of 4 value of a	10 points Ilgebraic o) expressior	$x^2 + 8x + 17?$	
•	A.Nega	tive num	pers I	B. Positive	e numbers	6 C. Z	Zero	D.	Uncertain	
2.	Which (of the foll	owing is t	the Condit	tion for tw	o triangle	es to be co	ongruent?		
	A. one a	angle and $\frac{1}{2}$	one side (of an isoso	celes trian	gle are eq	ual to one	e angle an	d one side of	
	anoi	ner isosc	eles triang	gle nalad tuict	1	~~~1 4 ~ 4~~	o oʻdoo of	an ath an m	isht anglad	
	B. two s	ales of o	ne right-a	ngied triai	ngle are e	qual to tw	o sides of	another r	ignt-angled	
	C area o	gic of two tri:	noles are	equal						
	D. two a	ngles and	l one side	of a trians	gle are equ	ual to two	angles ar	nd one side	e of another	
	trian	gle			-		U			
3.	Let the	length of	three side	s of $\triangle AI$	BC represe	ented as a	, <i>b</i> , <i>c</i> satis	sfy the con	ndition $2b = a$	
	+ c and	the leng	th of three	e altitudes	to three	sides den	oted as h_a	$_{a}, h_{b}, h_{c}$	Which of the	
	followi	ng represe	ents the re	lationship	of those	three altitu	udes?			
				$\frac{2}{2} = \frac{1}{2}$	+ 1	h_b	$=\frac{h_c}{h_c}$			
	A. ² <i>h</i>	$b = h_a$	+ h _c]	B. $h_b = h_a$	h_c	C. h_a	h_b	D. None	of the above	
4.	Determine maximum value of n such that each interior angle of a n -sides convex									
	polygor	are disti	nct whole	numbers.						
	A. 24		B. 25	С	. 26	D.	27			
					C · 1	anab that	C 1	1 1		
5.	There a	re two pe	rpendicula	ar chords (of a circle	such that	one of th	e chord w	as	

Instructor/辅导老师:

Sex/性别:

\$₽

Name/姓

School/学校:

City/市(省):_

Country/国 家:

Examinee Info. 学生资料

- low are four different groups of interior angle of $\triangle ABC$, which of them cannot be odivided into three smaller isosceles triangles of equal legs? $(50^{\circ}, 60^{\circ}, 70^{\circ})$
- a convex quadrilateral ABCD, $\angle A B C = 30^{\circ}$, $\angle B C D = 60^{\circ}$, BC = 8, = 1 and $S_{ABCD} = \frac{13\sqrt{3}}{2}$. What is the length of AB?

 $\sqrt{3}$ B. $2\sqrt{3}$ C. $3\sqrt{3}$ D. $4\sqrt{3}$

three real numbers a, b, c satisfy $a + b + c = a^2 + b^2 + c^2 = 2$. etermine the numerical value of $\frac{(1-a)^2}{bc} + \frac{(1-b)^2}{ca} + \frac{(1-c)^2}{ab}$.

3 B. -3 C. 1 D. Undetermined

in the blank. (5 points each, a total of 40 points)

a, b, c, d be four distinct real numbers (two numbers are not equal to two numbers) satisfy (a + c)(a + d) = 1 = (b + c)(b + d). Determine the value of (a + c)(b + c).

ve one prime factors of $1 + 2^{21} + 4^{21}$.

- he two bases of a trapezoid are 3 units and 4 units, one line segment parallel to two ses and subdivided the trapezoid into two smaller trapezoids of equal area, then what is e length of that segment?
- real numbers a_{5} b satisfy $\sqrt{a^{2}-2a+1} + \sqrt{36-12a+a^{2}} = 10 |b+3| |b-2|$, then what is e maximum value of $a^2 + b^2$?
- [a] denote the greatest integer not exceeding a. For example, [4.1] = 4, [-7.2] = -8. termine the rational number x (express the answer as improper fraction) that satisfy e equation $x + \frac{2013}{x} = [x] + \frac{2013}{[x]}$.
- f(x), g(x) be two second degree function with each of their leading term is 1. If four roots of equation f(g(x)) = 0 are 2010, 2011, 2012 and 2013; while the utions of g(f(x)) = 0 are -2010, -2011, -2012 and -2013, then what is the oduct of the minimum value of each function?

新加坡.决赛 九年级 Singapore.Final Grade 9

新加坡.决赛 九年级 Singapore.Final Grade 9

B. $(50^{\circ}, 50^{\circ}, 80^{\circ})$ C. $(45^{\circ}, 45^{\circ}, 90^{\circ})$ D. $(20^{\circ}, 20^{\circ}, 140^{\circ})$

- 15. Procedure of performing a *bubble sort* operation to a series a_1, a_2, \dots, a_n is as follows: First, compare the size of a1 from the first and a2 from the second terms in the given series. If $a_1 > a_2$, then swap the two positions in the series (that is, exchange their value), or remain unchanged if they are the equal; then compare the size of second and third term in the series, follow the same rule, that is; if $a_2 > a_3$, then swap, or else remain unchanged if they are equal; then compare the size of the third and fourth and so on^{, …,} according to the same rules, when reaching the last two terms, after compare the size of a_{n-1}, a_n and after the end of swapping the location, then stop. Now randomly arrange 1, 2, 3, ..., 2013 as a series and perform the above described "Bubble Sort" technique to this series of 2013 terms. What is the probability that after bubble sort the number in the 10th term is the number in the 5th term?
- 16. In a given isosceles $\triangle ABC$, $\angle A = 100^{\circ}$, AB = AC with P an interior point of this \triangle such that PB = AB and $\angle ABP = 2 \angle ACP$. What is the size of $\angle APB$?

C. Problem Solving. (10 points each, a total of 20 points. Show your brief solution on the space below each question)

17. Let BD and CE be the angle bisectors of $\triangle ABC$. Construct the angle bisectors of $\angle ABD$ and $\angle ACE$ at points B and C; respectively intersect at point P, O is the circum-center of acute $\triangle ABC$. If *BPOC* is a cyclic quadrilateral and *PB* = *PC*, then what is the measured degree of three interior angle of $\triangle ABC$?

18. The triplet (A, B, C) can be transformed with the following two steps: Transformation 1: Three numbers can be rearranged arbitrarily Transformation 2: Convert (A, B, C) into (2B + 2C - A, B, C); Assume that the initial state of a given triplet is (-1, 0, 1). (a) Can we perform a finite number of steps of transformation to obtain a triplet as (2012, 2013, 2014). Explain.

(b) Can we perform a finite number of steps of transformation to obtain a triplet such as (2009, 2010, 2011). Explain.

(c) Determine all possible values of x so that there is a finite number of steps of transformation to obtain a triplet as (1, 2024, x). Explain